Characterization of parabrachial subnuclei in mice with regard to salt tastants: possible independence of taste relay from visceral processing.

نویسندگان

  • Koji Hashimoto
  • Kunihiko Obata
  • Hisashi Ogawa
چکیده

We examined whether salt taste and/or abdominal illness were dealt within different subnuclei in the parabrachial nucleus (PBN) in mice, using retrograde tracing methods and c-Fos-like immunoreactivity (FLI) detection procedures. Some PBN subnuclei have distinct functions and receive various sensory inputs from the nucleus of the solitary tract (NTS) and other areas and relay them to the higher order nuclei such as the thalamus. The afferent-dependent pattern of FLI has been investigated in the PBN. However, it is unclear in which PBN subnuclei the tastants induce c-Fos, or whether PBN subnuclei process taste inputs separately from other inputs, or integrate them. After the tracer injections into the thalamic taste relay, the retrograde labeled cells revealed the taste relay cells in the PBN at the boundary with the superior cerebellar peduncle of both the inner part of the external lateral subnucleus and the medial subnucleus and in the waist area. On the other hand, NaCl intake induced intense FLI in the dorsal lateral subnucleus, whereas LiCl intake yielded intense FLI in both the dorsal lateral subnucleus and the outer part of the external lateral subnucleus. Thus, the present findings that subnuclei relaying taste information to the thalamus do not yield FLI in response to salt taste and abdominal illness indicate that they lack FLI yielding pathways or that they are independent from the subnuclei processing salt taste and visceral information via c-Fos in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli

The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral ...

متن کامل

Water as an Independent Taste Modality

To qualify as a "basic" taste quality or modality, defined as a group of chemicals that taste alike, three empirical benchmarks have commonly been used. The first is that a candidate group of tastants must have a dedicated transduction mechanism in the peripheral nervous system. The second is that the tastants evoke physiological responses in dedicated afferent taste nerves innervating the orop...

متن کامل

Lateral parabrachial lesions impair taste aversion learning induced by blood-borne visceral stimuli.

The lateral parabrachial area (LPB), main relay from the area postrema (AP), plays a role in processing visceral information and is thus of potential importance in taste aversion learning (TAL). This study used a lesion approach to address whether LPB functional relevance depends upon the features of toxins that serves as visceral stimuli in TAL. In addition, we explored whether LPB involvement...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

Dynamic taste responses of parabrachial pontine neurons in awake rats.

The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively "dynamics free." On the other hand, the majority of the input to P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical senses

دوره 34 3  شماره 

صفحات  -

تاریخ انتشار 2009